

Clozapine: New Research on Efficacy and Mechanism of Action

Herbert Y. Meltzer, Bijan Bastani, Luis Ramirez, and Shigehiro Matsubara

Department of Psychiatry, Case Western Reserve University, School of Medicine, 2040 Abington Road, Cleveland, OH 44106, USA

Summary. Clozapine can produce greater clinical improvement in both positive and negative symptoms than typical antipsychotic drugs in neuroleptic-resistant schizophrenic patients. The clinical response may occur rapidly in some patients but is delayed in others. Clozapine has also been reported to produce fewer parkinsonian symptoms, to involve a lower risk of producing tardive dyskinesia, and to produce no serum prolactin elevations in man. It seems likely that these effects are the result of a common biological mechanism or related mechanisms, rather than unrelated effects. Other atypical antipsychotic drugs, such as meliperone and fluperlapine, share at least some of these properties. A relatively low affinity for the D-2 dopamine (DA) receptor and high affinity for the 5-HT₂ receptor, producing a high 5-HT₂/D-2 ratio, best distinguishes atypical antipsychotics like clozapine from typical antipsychotic drugs. Through its weak antagonist action on D-2 DA receptors and a potent inhibitory effect on 5-HT₂ receptors, as well as its ability to increase DA and 5-HT release, clozapine may be able to permit more normal dopaminergic function in the anterior pituitary, the mesostriatal, mesolimbic and mesocortical regions. The numerous advantages of clozapine over typical neuroleptics are consistent with the primary importance of DA to the pathophysiology of schizophrenia. The secondary but still significant role of 5-HT in the action of clozapine may either be direct or via the effect of 5-HT on dopaminergic mechanisms. Some aspects of schizophrenia could be due to a dysregulation of the interaction between serotonergic and dopaminergic neurotransmission.

Key words: Clozapine – Schizophrenia – Serotonin – Dopamine – Prolactin

Offprint requests to: H. Y. Meltzer

Parts of this article were presented on the occasion of the inauguration ceremony of the Department of Psychiatry of the University of Mainz on April 2 and 3, 1987

Introduction

The somatic treatment of schizophrenia has remained more or less unchanged for 35 years. The many classes of neuroleptic drugs currently available are basically equivalent in their therapeutic potential for schizophrenia (Kane 1987). Some patients do appear to respond better to one such agent than to another, but the likely explanation for such idiosyncratic responses appears to be related more to pharmacokinetics, drug metabolism, or host differences in response to side effects rather than to pharmacodynamic differences which reflect unique mechanisms of action (Donaldson et al. 1985). All neuroleptic drugs have been thought to produce their antipsychotic action via blockade of D-2 dopamine (DA) receptors in the mesolimbic system (nucleus accumbens, olfactory tubercle, stria terminalis) (Snyder 1976), but it has been suggested that blockade of D-2 receptors, i.e., those DA receptors negatively coupled or not coupled to DA-sensitive cyclase, in other brain regions, e.g., the hippocampus (Bischoff 1986), may also be important. It has also been suggested that this ability to increase DA synthesis and release in the frontal cortex is important for the antipsychotic effects of neuroleptic drugs (Imperato and Angelucci 1988; Mefford et al. 1988). Because of these considerations, and the ability of indirect and direct DA agonists to elicit psychotic symptoms under various conditions, the major theory regarding the etiology of schizophrenia has implicated DA abnormalities, either excessive availability of DA or excessive numbers of D-2 receptors (Meltzer and Stahl 1976). Although there is some evidence to support both of these possibilities (e.g., Owen et al. 1978; Lee and Seeman 1980; Memo et al. 1983; Toru et al. 1988), it has proven difficult to provide unequivocal evidence for an abnormality of the dopaminergic system in schizophrenia despite the use of a wide range of methods to assess the DA system in man (see Meltzer 1984, 1987

for reviews). The heterogeneity of schizophrenia as well as methodological limitations have no doubt contributed to this failure.

The absence of unequivocal evidence of a dopaminergic abnormality in schizophrenia, together with significant advances in the understanding of the regulation of dopaminergic neurotransmission, has led to a number of major modifications of the DA hypothesis (Carlsson 1988; Meltzer 1988; Friedhoff 1988). Of these, one of the most important is the possibility that DA may be relevant only to the positive symptoms of schizophrenia, while the negative symptoms may represent a separate process related to structural changes in the brain or to neuropeptidergic abnormalities rather than to DA (Crow 1980). However, it has also been suggested that negative symptoms may indeed be related to abnormalities in DA neurotransmission, albeit to decreased rather than increased dopaminergic activity (MacKay 1980; Meltzer 1985). Other significant modifications of the DA hypothesis include increased emphasis on the potential importance of D-1 DA receptors, the DA receptors positively coupled to adenylate cyclase (Memo et al. 1983; Hess et al. 1987). The role of dysfunction of DA autoreceptors, the DA-sensitive receptors on cell bodies and terminals of DA neurons which regulate DA synthesis and release, as a possible means of causing increased release of DA has also been suggested (Meltzer 1982; Carlsson 1988). Finally, dysfunction of the interaction between DA and various neurotransmitters, especially serotonin (5-HT), norepinephrine (NE), acetylcholine (ACH), gamma-aminobutyric acid (GABA) and excitatory amino acids, rather than an abnormality confined to the DA system itself, has also been proposed as a modification of the simple DA excess or deficiency hypothesis (Meltzer 1987).

The discovery of the antipsychotic properties of the classical neuroleptic drugs was critical to the development of the DA hypothesis in its original form. The development of novel agents with a different spectrum of action could also be of value to further testing, modifying and possibly rejecting the DA hypothesis. This seems to be the case with clozapine, a dibenzazepine compound with many novel clinical actions (Meltzer 1989 a-c). Clozapine is the best-studied example of a group of atypical neuroleptic drugs, including amperozide (Christensen and Gustafsson 1985), fluperlapine (Woggon et al. 1985), melperone (Bjerkenedt et al. 1979) and RMI-81582 (Young and Meltzer 1980), which have been distinguished from typical neuroleptic drugs because of their decreased potential to cause catalepsy in rodents and extrapyramidal symptoms (EPS) in man (Meltzer et al. 1989b). This article briefly reviews the unique clinical features of clozapine, some basic and clinical research

studies on the mechanism of action of clozapine and other atypical antipsychotic drugs, and then considers the importance of these results for the DA hypothesis.

Unique Clinical Features of Clozapine

Clozapine has been repeatedly shown to produce fewer acute and subacute EPS than typical antipsychotic drugs (Angst et al. 1971; Matz et al. 1974; Claghorn et al. 1987; Kane et al. 1988). Other atypical antipsychotic drugs, e.g., melperone (Christensen et al. 1986), fluperlapine (Gerlach et al. 1984; Fischer-Cornelssen 1984) and RMI-81582 (Young and Meltzer 1980) also produce fewer EPS. Clozapine, in low doses, may be given to parkinsonian patients to treat DA agonist-induced psychoses, without worsening the parkinsonian symptoms (Scholz and Dichgans 1985).

Clozapine also has not been reported to produce new cases of tardive dyskinesia despite its use in many thousands of schizophrenic patients over prolonged periods of time (G. Honigfeld, unpublished data); 15%–20% of these patients might be expected to develop tardive dyskinesia (Kane et al. 1986). Clozapine can suppress the symptoms of even severe tardive dyskinesia or tardive dystonia (Simpson et al. 1978; Meltzer and Luchins 1984). While this might raise the possibility that it could cause one of the tardive movement disorders, based on analogy with typical neuroleptic drugs, it more likely indicates another important difference between clozapine and such compounds.

Clozapine does not increase serum prolactin (PRL) levels in man (Meltzer et al. 1979). Thus, it does not cause galactorrhea. Other atypical antipsychotic drugs, such as melperone (Bjerkenedt et al. 1979), amperozide (A. Bjork, personal communication, 1988), fluperlapine (Dieterle et al. 1984) and RMI-81582 (Young and Meltzer 1980) also produce smaller or no increases in serum PRL levels in schizophrenic patients.

Most importantly, clozapine appears to have superior efficacy as an antipsychotic agent. This appears to be true for newly admitted schizophrenic patients (Fischer-Cornelssen and Ferner 1976; Claghorn et al. 1987) as well as treatment-resistant schizophrenic patients (Juul-Povlsen et al. 1985; Kane et al. 1988). In the latter study, nearly all of 305 patients who had a history of failure to respond to adequate trials of at least three different neuroleptic drugs of two different classes were shown to be non-responders or intolerant ($N = 22$) to haloperidol in the first phase of the study. Those patients who had had 9.2 ± 7.3 (SD) hospitalizations and had been hospitalized a median of 2.2 years at the time the study began were then randomly assigned to clozapine or chlorpromazine plus benzotropine. Only 5 of the 141 (4%) patients treated with

chlorpromazine responded with at least a 20% decrease in total Brief Psychiatric Rating Scale (BPRS) (Overall and Gorham 1962), plus a Clinical Global Improvement score of mild or less, or a post-treatment BPRS score of less than 36. However, 38 of the 126 (30%) clozapine-treated patients were responders by these criteria ($P < 0.001$). The greater improvement in the clozapine group in positive symptoms was noted during week 1 and each succeeding week of the 6-week trial. The mean decrease in total BPRS score was 25% at the end of 6 weeks (from 60 to 45). This compared with a 7.5% decrease in total BPRS score in the chlorpromazine-treated group. BPRS ratings were still steadily improving in the clozapine group at the end of 6 weeks, with no evidence of any decrease in the rate of improvement. Notably, clozapine also produced a significant improvement in the BPRS Anergia subscale, which reflects negative symptoms, but chlorpromazine did not. Independent nurse's rating also revealed a marked improvement in ward behavior in the clozapine-treated patients.

The longer-term effects of clozapine appear equally promising. We have found (Meltzer et al. 1989a) that the clinical benefits of clozapine exceed those reported by us at the end of 6 weeks' treatment (Kane et al. 1988). In an on-going open prospective trial of clozapine in patients with treatment-resistant schizophrenia very similar to those in the U.S. multicenter study of Kane et al. (1988), 31 of 51 patients (60.8%) showed at least a 20% decrease in total BPRS score at the end of 10.8 ± 8.4 months (median 8.9 months) treatment. There were significant decreases in all four BPRS subscales, including Withdrawal-Retardation, which is a good measure of the effect of treatment on negative symptoms. Although in that study the improvement in the BPRS Withdrawal-Retardation subscale was not independent of improvement in the Paranoid Disturbance subscale, we have now found that the improvement in another negative symptom scale during 6 weeks of clozapine treatment in these same patients was independent of the improvement in positive symptoms. Of the 31 improvers noted above (Meltzer et al. 1989a), the 20% or greater decrease in total BPRS was first noted at 6 weeks ($N = 14$), 3 months ($N = 9$), 6 months ($N = 2$), 9 months ($N = 5$), and 12 months ($N = 1$). These results suggest that a clozapine trial should last at least 3 months and preferably much longer before a patient is considered to be a nonresponder. Meltzer et al. (1989a) also noted a significant improvement in social functioning in the Quality of Life Scale (Heinrichs et al. 1984). Improvement was noted in work and school performance, social activities, social initiative and motivation. Lindstrom (1988) also noted a marked improvement in work function in clozapine-treated, neuroleptic-resistant schizophrenic patients. It has

been our experience that some, institutionalized patients with pronounced regressive schizophrenic symptoms function effectively after 3–12 months of clozapine treatment for the first time in many years. For these individuals, clozapine appears to have helped to bring many of the symptoms of schizophrenia into full remission. However, even those patients would likely relapse if clozapine were stopped, based on our experience with other patients who have had to discontinue clozapine because of side effects or who have elected to discontinue it for various reasons. No correlation was found between ventricular brain ratio or a measure of cortical atrophy and response to clozapine in these patients (Meltzer et al. 1989a).

In view of the 1%–2% incidence of agranulocytosis or granulocytopenia produced by clozapine (Andevran and Griffith 1977), compared with the 0.05%–0.1% produced by typical neuroleptic drugs, it is essential that the advantages of clozapine be weighed against the increased risk. With weekly monitoring of the white blood count indefinitely or at least for the first 18-week period when 80% of the marrow depression occurs, it should be possible to restrict morbidity and mortality to very low levels. Under such circumstances, the advantages of clozapine for treatment-resistant schizophrenic patients appear substantial. Further study is needed to determine whether this is also true for non-treatment-resistant schizophrenic patients.

Biological Basis of Clozapine Advantages

The responsiveness of those treatment-resistant patients whose illness markedly improves during clozapine treatment strongly suggests that neuroleptic resistance is not an indicator of structural brain damage that portends irreversible deterioration. No patients with only negative symptoms were included in the study of Kane et al. (1988), so it is not possible to reject the type II schizophrenia model advocated by Crow (1980) on the basis of this study. However, the results obtained in our study (Meltzer et al. 1989a) in some neuroleptic-intolerant schizophrenics do support other evidence that negative symptoms can respond to antipsychotic drug treatment (Meltzer et al. 1985). If treatment resistance is not based upon structural brain damage, the question arises as to what is the nature of the functional lesion that underlies the failure to respond to conventional neuroleptics. Why is it that decreasing D-2-mediated dopaminergic activity by typical neuroleptics is insufficient to bring about a remission whereas clozapine frequently is successful?

The multiple clinical advantages of clozapine over typical antipsychotic drugs could have important im-

plications for further research in schizophrenia. It seems highly unlikely that multiple unrelated processes account for the ability of clozapine to produce fewer parkinsonian symptoms, to involve a lower risk of producing tardive dyskinesia, not to elevate serum prolactin correlations in man, and to have greater efficacy in reducing positive and negative symptoms. Rather, all four effects may be due to a common mechanism. However, it is not entirely clear what this mechanism is.

The average clinical dose of clozapine (300–600 mg/day) in relation to its affinity for the striatal D-2 receptor is consistent with that of typical neuroleptic drugs (Snyder 1976). However, clozapine produces functional blockade of some but not all D-2 receptors in man. This has been discussed in detail elsewhere (Meltzer 1989c). Similarly, the effects of clozapine on D-2 receptors in rodents are mixed. Clozapine blocks rat pituitary D-2 receptors *in vitro* (Meltzer 1989a). However, clozapine administration for 1–12 months does not block apomorphine-induced stereotypy or upregulate striatal D-2 receptors (Rupniak et al. 1985). It is not apparent that the differences in D-2 receptor blockade produced by clozapine, and typical neuroleptic drugs are sufficient to account for clozapine's unique properties.

We have previously reported that clozapine and other atypical antipsychotic drugs increase the activity of the tuberoinfundibular dopaminergic (TIDA) neurons following the administration of clozapine and other atypical neuroleptics (Gudelsky et al. 1989). This appears to account for the transient nature of the increase in rat serum PRL levels produced by clozapine (Gudelsky et al. 1987), since the increased release of DA from the hypothalamus overcomes the blockade of D-2 receptors at the pituitary. *In vivo* dialysis studies also have demonstrated that clozapine increases DA release in the dorsal striatum and prefrontal cortex or the striatum and nucleus accumbens of freely moving rats in a dose-dependent manner (Imperato and Angelucci 1988; Ichikawa and Meltzer, unpublished data). However, other evidence does not reveal that clozapine increases DA release in the striatum (see Altar et al. 1988 for references), which indicates that further study is needed. It is possible that the increased release of DA from TIDA neurons following clozapine also occurs in man and prevents any stimulation of PRL release which might result from clozapine-induced D-2 DA receptor blockade at the pituitary. The clinical significance of the absence of hyperprolactinemia with clozapine has yet to be fully studied. Since intracerebral PRL administration has been shown to affect the activity of striatal DA neurons (Kovacs et al. 1984) and the ability of neuroleptics to induce DA-receptor supersensitivity (Hruska

1986), it is at least theoretically possible that the absence of increased PRL secretion during clozapine treatment may partially contribute to the diminished parkinsonism and tardive dyskinesia associated with clozapine administration. The inability of clozapine to produce depolarization blockade of the firing of DA neurons with cell bodies in the substantia nigra, achieved with typical neuroleptic drugs, has been suggested to be the major reason for its lesser extrapyramidal side effects, at least with subchronic administration (Chiodo and Bunney 1983). This effect of clozapine was inferred to be due to its anticholinergic and/or alpha-1-noradrenergic blocking properties (Chiodo and Bunney 1985), but no direct proof that these mechanisms are solely or partially responsible for this effect has yet been offered. Prolactin has also been reported to activate the mesolimbic DA system through local actions on presynaptic terminals of DA neurons in the nucleus accumbens without affecting the substantia nigra or the ventral tegmental areas (Chen and Ramirez 1988). Thus, the absence of hyperprolactinemia with clozapine treatment compared with the large increases in serum prolactin produced by typical neuroleptics could also contribute to a greater normalization of dopaminergic activity in the mesolimbic terminal areas and, thus, to a greater antipsychotic effect.

Clozapine has also been found to have a number of significant effects on serotonergic neurotransmission. These are briefly discussed here because they could be important for the clinical advantages of clozapine, in part through serotonergic influence on dopamine neurotransmission. There is some evidence that clozapine increases brain 5-HT synthesis (Ruch et al. 1984), but this needs to be confirmed by more modern methods. Clozapine has also been shown to affect 5-HT release by several mechanisms (Drescher and Hetey 1988). Clozapine was found to enhance 5-HT release from synaptosomes from the rat nucleus accumbens by blocking the inhibitory effect of 5-HT on a 5-HT autoreceptor and to a lesser extent by blocking a DA presynaptic receptor which gates 5-HT release (Drescher and Hetey 1988). The authors also found that clozapine more potently blocked the inhibitory effect of DA on DA release at the autoreceptor in accumbens synaptosomes than through an action on the 5-HT heteroreceptor which inhibits DA release. Drescher and Hetey (1988) concluded that the antipsychotic effect of clozapine might be mediated, in part, by the action of clozapine to promote DA release by blocking the 5-HT autoreceptor.

There is extensive evidence from animal studies, which we have reviewed elsewhere (Meltzer 1989a, c), that clozapine is a 5-HT antagonist (Sulpizio et al. 1978; Fink et al. 1984; Nash et al. 1988), that it has a relatively high affinity for the 5-HT₂ receptor (Altar et

al. 1986; Meltzer et al. 1989b) and that it can produce, with chronic administration, down-regulation of the rat frontal cortical 5-HT₂ receptor (Reynolds et al. 1983). We have recently found that a single dose of clozapine, 20 mg/kg, can produce a significant decrease in frontal cortex 5-HT₂ receptor binding sites which lasts at least 72 h (Matsubara and Meltzer, to be published).

Clozapine has been shown to inhibit the cortisol response to MK-212, a direct-acting 5-HT agonist (Lowy et al. 1988), after 4–6 weeks treatment with clozapine (Meltzer 1989b). This is most likely due to its 5-HT₂ blocking properties or to down-regulation of 5-HT₂ receptors, since the effect of MK-212 on the hypothalamic-pituitary-adrenal axis is mediated by a 5-HT₂ mechanism (Koenig et al. 1987). The effect of MK-212 on serum cortisol was not inhibited in patients treated with chlorpromazine, molindone, or haloperidol (Meltzer 1989a). This is noteworthy since at least one of these agents, e.g., chlorpromazine, has a very similar affinity for the 5-HT₂ receptor in vitro as does clozapine and, like clozapine, can down-regulate cortical 5-HT₂ receptor in vivo. This suggests that clozapine is a particularly potent 5-HT₂ antagonist in vivo or that MK-212 may be stimulating cortisol secretion via a non-5-HT₂-dependent mechanism.

The importance of the D-1 DA receptor has been clarified by recent biochemical, electrophysiological and behavioral studies (Clark and White 1987). The clinical importance of D-1 receptors has been discussed by Beaulieu (1987). Briefly, it has been demonstrated that some DA-dependent neurochemical, electrophysiological and behavioral effects reflect the cooperative or antagonistic action of D-1 and D-2 receptor stimulation. Such interactions may be mediated on the same or different DA neurons, or a combination thereof (Saller and Salama 1986; Stoof and Verheijden 1986; Pugh et al. 1985; Goldstein et al. 1987). Some interactions may be present only after chronic administration (Morelli et al. 1987). It has recently been demonstrated that clozapine and other atypical neuroleptics are relatively more potent inhibitors of the binding of ³H-SCH-23390, the major ligand used to quantify D-1 receptor binding sites (Iorio et al. 1983) to D-1 receptors in vivo (Andersen et al. 1986), compared with typical neuroleptics. Furthermore, clozapine and fluperlapine are more potent in inhibiting DA-stimulated adenylate cyclase than would be predicted on the basis of their potencies to displace ³H-SCH-23390 binding, whereas the reverse is true for typical neuroleptics (Andersen and Braestrup 1986). This may be due to a high affinity of clozapine for D-1 receptor sites actually coupled to adenylate cyclase. These authors suggested that the antipsychotic efficacy of clozapine and fluperlapine is due to a blockade

of adenylate cyclase-coupled D-1 receptors. Chronic administration of clozapine (1–12 months) at doses of 24–27 mg/kg per day increased D-1 receptor density in rat striatum whereas chronic haloperidol (1.4–1.6 mg/kg per day) treatment had no effect.

In a small group of typical and atypical antipsychotic drugs ($N = 13$), we found that the D-1 affinities of the atypical antipsychotic drugs were lower than those of the typical drugs (Matsubara and Meltzer 1988); however, as the number of drugs studied was increased to 30, we found no differences between the two groups with regard to D-1 affinities (Meltzer et al. 1989b). We observed a blockade of the effect of clozapine on DOPA accumulation in the median eminence by a D-1 agonist, SKF-38393 (Gudelsky and Meltzer 1989). However, we have found that melperone and setoperone are almost inactive as D-1 dopamine receptor antagonists in vitro (Meltzer et al. 1989b) and the selective D-1 antagonist SCH-23390 was ineffective in increasing the accumulation of DOPA in the median eminence (Gudelsky and Meltzer 1989). Thus, although some of the actions of clozapine appear to involve D-1 receptor mechanisms, the exact nature of this interaction remains unclear. This will be considered subsequently.

In order to clarify further the relative importance of D-1, D-2 and 5-HT₂ affinities for the mechanism of action of atypical antipsychotic drugs, we determined the pKi negative log values of 13 unequivocal typical and 8 putative atypical antipsychotic drugs for rat striatal D-1 and D-2 dopamine receptor binding sites and cortical serotonin (5-HT₂) receptor binding sites (Matsubara and Meltzer 1988; Meltzer et al. 1989b). The atypical antipsychotics had significantly lower pKi values for the D-1 and D-2 but not for 5-HT₂ binding sites. The 5-HT₂ and D-1 pKI values were correlated for the typical compounds, whereas the 5-HT and D-2 pKi values were correlated for the atypical antipsychotic drugs. The 5-HT₂/D-2 and 5-HT₂/D-1 ratios were significantly higher for the atypical drugs than for the typical drugs, but there was no difference in the D-1/D-2 ratio. Altar et al. (1986) also found a higher 5-HT₂/D-2 ratio for atypical drugs. In a step-wise discriminant function analysis to determine the independent contribution of each type of affinity to classification as typical or atypical type the D-2 pKi value was entered first, followed by the 5-HT₂ pKi value. The D-1 pKi value was not entered into the model. A discriminant function analysis correctly classified 20 of 21 of these compounds plus 14 of 17 additional test compounds as typical or atypical antipsychotic drugs for an overall correct classification rate of 89.7%. A cluster analysis based only on the 5-HT₂/D-2 ratio grouped 16 of 18 atypical plus 1 typical in one cluster and 19 of 20 typical plus 2 atypicals in a second

cluster for an overall correct classification rate of 92.1%. These data suggest that determination of D-2 and 5-HT₂ pKi values may be useful for rapid screening of potential atypical antipsychotic drugs with only minimal false positives.

The potent 5-HT₂ antagonism of clozapine and other atypical antipsychotic drugs relative to their D-2 antagonism does not necessarily imply that this is critical to their mechanism of action. However, there is considerable evidence that there are important interactions between the serotonergic and dopaminergic systems in both the nigrostriatal and mesolimbic pathways (Costall et al. 1975; Dray 1981; Meltzer et al. 1979; Meltzer 1989b, c). To give a few examples, Nicolaou et al. (1979) presented evidence of a tonic inhibitory effect of the dorsal and median raphé nuclei on DA metabolism in the striatum. Hervé et al. (1979, 1981) presented evidence that the dorsal raphé regulates DA turnover in the nucleus accumbens and not the frontal cortex, whereas the median raphé has effects on DA metabolism in the accumbens and frontal cortex.

There is both preclinical (Waldmeier and Delini-Stula 1979) and clinical (Bersani et al. 1986) evidence that decreasing serotonergic activity, and 5-HT₂ blockade in particular, may diminish neuroleptic-induced EPS. Setoperone, a fairly potent antagonist of both 5-HT₂ and D-2 receptors, has been reported to be more effective than typical drugs in decreasing negative symptoms (Ceulemans 1985). These results suggest that the 5-HT₂ antagonism of clozapine and other atypical neuroleptics may be of particular importance for their action. Because clozapine only blocks 5-HT₂ receptors, the enhanced 5-HT release might facilitate neurotransmission at 5-HT_{1A}, 5-HT_{1D} or 5-HT₃ receptors.

The evidence reviewed here that a DA-5-HT interaction is important for the action of atypical neuroleptics does not necessarily imply that an abnormality in the interaction of 5-HT and DA is etiologically related to schizophrenia or some aspects thereof. However, this seems a particularly promising variation of the DA hypothesis to pursue. It would be compatible with the failure to find consistent changes in dopaminergic activity through fairly gross measures, such as CSF or plasma concentrations of homovanillic acid, the major metabolite of DA, or measures of D-2 receptor density using positron tomography or in post-mortem studies. Relative imbalances between dopaminergic and serotonergic neurotransmission in specific regions might be of greater importance.

In conclusion, clozapine has been shown to have multiple advantages over typical neuroleptic drugs. Other atypical antipsychotic drugs, such as melperone, share at least some of these advantages, but further

study is needed to determine whether they are also more effective as antipsychotic drugs. There are numerous biological differences between typical and atypical drugs and it is not yet possible to ascertain which are critical to their major advantages. However, the ratio of antagonism of 5-HT₂ to D-2 receptors appears a strong possibility. Further, the ability to enhance the release of DA and 5-HT via a direct rather than just the short-loop feedback mechanism may be of importance. Further study is needed to establish whether some aspects of schizophrenia represent an abnormality in the interaction of serotonergic and dopaminergic mechanisms.

Acknowledgements. The research reported was supported, in part, by USPHS MH 41684, MH 42868, GCRC MOIRR00080-25, by grants from the Cleveland, Prentiss and Sawyer Foundations, NARSAD and the Laurate Psychiatric Research Center Investigator's Award. H.Y.M. is the recipient of USPHS Research Career Scientist Award 47808. We are grateful to Ms L. Mason for typing the manuscript.

References

- Altar CA, Wasley DM, Neale RF, Stone GA (1986) Typical and atypical antipsychotic occupancy of D-2 and S-2 receptors: an autoradiographic study in rat brain. *Brain Res Bull* 16: 527-525
- Altar CA, Wasley A, Gerhardt SC, Liebman GM, Wood PL (1988) Dopamine neurochemical profile of atypical antipsychotics resembles that of D-1 antagonists. *Naunyn-Schmiedeberg's Arch Pharmacol* 338: 162-168
- Andersen PH, Braestrup C (1986) Evidence for different states of the dopamine D-1 receptor: clozapine and fluperlapine may preferentially label an adenylate cyclase-coupled state of the D-1 receptor. *J Neurochem* 47: 1822-1831
- Andersen PH, Nielsen EB, Gronvald FC, Braestrup C (1986) Some atypical neuroleptics inhibit [³H]SCH-23390 binding in vivo. *Eur J Pharmacol* 120: 143-144
- Andevran D, Griffith RW (1977) Clozapine-induced agranulocytosis: a situation report up to August 1976. *Eur J Clin Pharmacol* 11: 1-3
- Angst J, Bente D, Berner P, Heimann H, Helmchen H, Hippius H (1971) Das klinische Wirkungsbild von Clozapin (Untersuchung mit dem AMP-system). *Pharmakopsychiatrie* 4: 200-211
- Beaulieu M (1987) Clinical importance of D-1 and D-2 receptors. *Can J Neurol Sci* 14: 402-406
- Bersani G, Grispini A, Morini S, Pasini A, Valducci M, Ciani A (1986) Neuroleptic-induced extrapyramidal side effects: clinical perspectives with ritanserin (R 55667), a new selective 5-HT₂ receptor blocking agent. *Curr Ther Res* 40: 492-499
- Bischoff S (1986) Mesohippocampal dopamine system: characterization, functional and clinical implications. In: Issacson RL, Pribram KH (eds) *The hippocampus*, vol 3. Plenum, New York, pp 1-32
- Bjerkenedt L, Gullberg B, Härnryd C, Sedvall G (1979) Relationships between clinical and biochemical effects of melperone and thiothixene in psychotic women. *Arch Psychiat Nervenkr* 227: 181-192
- Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. *Neuropsychopharmacology* 1: 179-186

Ceulemans DLS (1985) Effect of serotonin antagonism in schizophrenia: a pilot study with setoperone. *Psychopharmacology* 85: 329–332

Chen J-C, Ramirez VD (1988) In vivo dopaminergic activity from nucleus accumbens, substantia nigra and ventral tegmental area in the freely-moving rat: basal neurochemical output and prolactin effect. *Neuroendocrinology* 48: 329–335

Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: differential effects of chronic administration of the activity of A9 and A10 midbrain dopaminergic neurons. *J Neurosci* 3: 1607–1619

Chiodo LA, Bunney BS (1985) Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain and dopamine neurons. *J Neurosci* 5: 2539–2544

Christensen I, Gustafsson B (1985) Amperozide, a novel psychotropic compound with specific effect on limbic brain areas. *Acta Physiol Scand* 124 [Suppl 542]: 281

Christensen I, Geisman L, Kirkegaard A, Kirkegaard G (1986) Additional studies on side effects of melperone in long-term therapy for 1–20 years in psychiatric patients. *Arzneimittelforschung* 36: 855–860

Claghorn JL, Honigfeld G, Abuzzahab FS, Wang R, Steinbook R, Tuason V, Klerman GL (1987) The risks and benefits of clozapine versus chlorpromazine. *J Clin Psychopharmacol* 7: 377–384

Clark D, White FI (1988) Dopamine receptor – the search for a function: a critical evaluation of the D-1/D-2 dopamine receptor classification and its functional implications. *Synapse* 1: 347–388

Costall B, Fortune DH, Naylor BJ, Marsden CD, Pycock CJ (1975) Serotonergic involvement with neuroleptic catalepsy. *Neuropharmacology* 14: 859–868

Crow TJ (1980) Molecular pathology of schizophrenia: more than one disease process. *Br Med J* 280: 66–68

Dieterle D, Eben E, Einhaupi K, Hippius H, Klein H, Rüther E, Schmauss M (1984) The effect of fluperlapine in acute psychotic patients. *Pharmacopsychiatry* 7: 57–60

Donaldson SG, Gelenberg AJ, Baldessarini RJ (1985) The pharmacologic treatment of schizophrenia: a progress report. *Schizophr Bull* 11: 5–28

Dray A (1981) Serotonin and the basal ganglia; functions and interactions with other neuronal pathways. *J Physiol (Paris)* 77: 393–403

Drescher K, Hetey L (1988) Influence of antipsychotics and serotonin antagonists on presynaptic receptors modulating the release of serotonin in synaptosomes of the nucleus accumbens of rats. *Neuropharmacology* 27: 31–36

Fink H, Morgenstern R, Oelssner W (1984) Clozapine – a serotonin antagonist? *Pharmacol Biochem Behav* 20: 513–517

Fischer-Cornelissen KA (1984) Fluperlapine in 104 schizophrenic patients. Open multicenter trial. *Arzneimittelforschung* 34: 125–130

Fischer-Cornelissen KA, Ferner U (1976) An example European multicenter trials; multispectral analysis of clozapine. *Psychopharmacol Bull* 12: 34–39

Friedhoff AJ (1988) Dopamine as a mediator of a central stabilizing system. *Neuropsychopharmacology* 1: 189–191

Gerlach J, Korsgaard S, Noring U (1984) Primary (initial) and secondary (tardive) dyskinesia: effect of fluperlapine, a new typical neuroleptic drug. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds) *Catecholamines, part C: neuropharmacology and central nervous system – therapeutic aspects*. Liss, New York, pp 73–78

Goldstein JM, Litwin LC, Sutton EB, Malick JB (1987) D-2 dopamine antagonist-like effect of SCH-23390 on A9 and A10 dopamine neurons. *Life Sci* 40: 1039–1044

Gudelsky GA, Meltzer HY (1989) Activation of tuberoinfundibular neurons following the acute administration of atypical antipsychotics. *Neuropsychopharmacology* 2: 45–51

Gudelsky GA, Koenig JI, Simonovic M, Koyama T, Ohmori T, Meltzer HY (1987) Differential effects of haloperidol, clozapine, and fluperlapine on tubero-in-fundibular dopamine neurons and prolactin secretion in the rat. *J Neural Transm* 68: 227–240

Heinrichs DW, Hanlow ET, Carpenter WT Jr (1984) The quality of life scale: an instrument for rating the schizophrenic deficit syndrome. *Schizophr Bull* 10: 388–396

Heré D, Simon H, Blanc G, Lisoprawski A, LeMoal M, Glowinski J, Tassin JP (1979) Increased utilization of dopamine in the nucleus accumbens but not in the cerebral cortex after dorsal raphé lesion in the rat. *Neurosci Lett* 15: 127–134

Hervé D, Simon H, Blanc G, LeMoal M, Glowinski J, Tassin JP (1981) Opposite changes in dopamine utilization in the nucleus accumbens and the frontal cortex after electrolytic lesion of the median raphé in the rat. *Brain Res* 216: 422–428

Hess EJ, Bracha HS, Kleinman JE, Creese I (1987) Dopamine receptor subtype imbalance in schizophrenia. *Life Sci* 40: 1487–1497

Hruska RE (1986) Modulation role for prolactin in the elevation of striatal dopamine receptor density induced by chronic treatment with dopamine receptor antagonist. *Brain Res Bull* 16: 331–339

Imperato A, Angelucci L (1988) Effects of the atypical neuroleptics, clozapine and fluperlapine on the in vivo dopamine release in the dorsal striatum and in the prefrontal cortex. Abstracts of the XVI CINP Congress, Munich. *Psychopharmacology* 96 [Suppl 1]: 79

Iorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA (1983) SCH-23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. *J Pharmacol Exp Ther* 226: 462–468

Juul-Povlsen U, Noring J, Fog R, Gerlach J (1985) Tolerability and therapeutic effect of clozapine: a retrospective investigation of 216 patients treated with clozapine for up to 12 years. *Acta Psychiatr Scand* 71: 176–185

Kane JM (1987) Treatment of schizophrenia. *Schizophr Bull*, pp 133–156

Kane JM, Woerner M, Borenstein M, Wegner J, Liberman J (1986) Integrating incidence and prevalence of tardive dyskinesia. *Psychopharmacol Bull* 22: 254–258

Kane J, Honigfeld G, Singer J, Meltzer HY, the Clozaril Collaborative Study Group (1988) Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. *Arch Gen Psychiatry* 45: 789–796

Koenig JI, Gudelsky GA, Meltzer HY (1987) Stimulation of corticosterone and β -endorphin secretion in the rat by selective 5-HT receptor subtype activation. *Eur J Pharmacol* 137: 1–8

Kovacs GL, Drago F, Acasi L, Tihanyi A, Scapagnini V, Telegdy G (1984) Catecholamine utilization in specific rat brain nuclei after short-term hyperprolactinemia. *Brain Res* 324: 29–34

Lee T, Seeman P (1980) Elevation of brain neuroleptic/dopamine receptors in schizophrenia. *Am J Psychiatry* 137: 191–197

Lindstrom LH (1988) The effect of long-term treatment with clozapine in schizophrenia: a retrospective study in 96 patients treated with clozapine for up to 13 years. *Acta Psychiatr Scand* 77: 524–529

Lowy MT, Koenig JI, Meltzer HY (1988) Stimulation of serum cortisol and prolactin in man by MK-212, a centrally active serotonin agonist. *Biol Psychiatry* 23: 818–828

MacKay AVP (1980) Positive and negative symptoms and the role of dopamine. *Br J Psychiatry* 137: 379–383

Matsubara S, Meltzer HY (1988) Effect of typical and atypical antipsychotic drugs on D-1 and D-2 dopamine (DA) receptor and serotonin (5-HT₂) receptors. *Neurosci Abs* 14:370

Matsubara S, Meltzer HY (1988) Effect of typical and atypical antipsychotic drugs on 5-HT₂ receptor density in rat cerebral cortex. *Life Sci* (in press)

Matz R, Rick W, Oh D, Thompson H, Gershon S (1974) Clozapine – a potential antipsychotic agent without extrapyramidal manifestation. *Curr Ther Res* 16:687–695

Mefford IN, Roth KA, Agren H, Barchas JD (1988) Enhancement of dopamine metabolism in rat brain frontal cortex: a common effect of chronically administered antipsychotic drugs. *Brain Res* 475:380–384

Meltzer HY (1982) Dopamine autoreceptor stimulation: clinical significance. *Pharmacol Biochem Behav* 17:1–10

Meltzer HY (1984) Biological studies in schizophrenia. *Schiz Bull* 13:77–114

Meltzer HY (1985) Dopamine and negative symptoms in schizophrenia: critique of the Type I-Type II hypothesis. In: Alpert M (ed) *Controversies in schizophrenia: changes and constancies*. Guilford Press, New York, pp 110–136

Meltzer HY (1986) Novel approaches to the pharmacotherapy of schizophrenia. *Drug Develop Res* 9:23–40

Meltzer HY (1987) Biological studies in Schizophrenia. *Schizophr Bull Rep* 3:72–114

Meltzer HY (1988) New insights into schizophrenia through atypical antipsychotic drugs: Comments on “The current status of the dopamine hypothesis of schizophrenia”. *Neuropsychopharmacology* 1:193–196

Meltzer HY (1989a) Clozapine: clinical advantages and biological mechanisms. In: Schulz C, Tamminga C (eds) *Schizophrenia: A Scientific Focus. International Conference on Schizophrenia*. Oxford Press, New York, pp 302–309

Meltzer HY (1989b) Clinical studies on the mechanism of action of clozapine: The dopamine serotonin hypothesis of schizophrenia. *Psychopharmacol* (in press)

Meltzer HY (1989c) Clozapine: Mechanism of action in relation to its clinical advantages. In: Kales A, Stefanos CN, Talbott J (eds) *Recent advances in schizophrenia*. (In press)

Meltzer HY, Luchins DJ (1984) Effect of clozapine in severe tardive dyskinesia: a case report. *J Clin Psychopharmacol* 4:316–322

Meltzer HY, Stahl S (1976) The dopamine hypothesis: a review. *Schizophr Bull* 2:19–76

Meltzer HY, Goode DJ, Schyve PM, Young M, Fang VS (1979) Effect of clozapine on human serum prolactin levels. *Am J Psychiatry* 136:1550–1555

Meltzer HY, Young M, Metz J, Fang VS, Schyve PM, Arora RC (1979) Extrapyramidal side effects and increased serum prolactin following fluoxetine, a new antidepressant. *J Neural Trans* 45:165–175

Meltzer HY, Nash JF, Koenig JI, Gudelsky GA (1986a) Clozapine: neuroendocrine studies of an atypical neuroleptic. *Clin Neuropharmacol* 9:316–318

Meltzer HY, Sommers AA, Luchins DJ (1986b) The effect of neuroleptics and other psychotropic drugs on negative symptoms in schizophrenia. *J Clin Psychopharmacol* 6:329–338

Meltzer HY, Bastani B, Kwon K, Young, Ramirez L, Burnett S, Sharpe J (1989a) A prospective study of clozapine in treatment-resistant schizophrenia patients. I. Preliminary report. *Psychopharmacology* (in press)

Meltzer HY, Matsubara S, Lee J-C (1989b) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin₂ pKi values. *J Pharmacol Exp Ther* (in press)

Memo M, Kleirman JE, Hanbauer I (1983) Coupling of dopamine D₁ recognition sites with adenylate cyclase in nuclei accumbens and caudatus of schizophrenics. *Science* 221:1302–1304

Morelli M, Fenu S, Di Chiara G (1987) Behavioral expression of D-1 receptor supersensitivity depends on previous stimulation of D-2 receptors. *Life Sci* 40:245–251

Nash JF, Meltzer HY, Gudelsky GA (1988) Antagonism of serotonin receptor mediated neuroendocrine and temperature responses by atypical neuroleptics in the rat. *Eur J Pharmacol* 151:463–469

Nicolaou NM, Garcia-Muñoz M, Arbuthnott GW, Eccleston D (1979) Interactions between serotonergic and dopaminergic systems in rat brain demonstrated by small unilateral lesions of the raphe nuclei. *Eur J Pharmacol* 57:295–305

Overall JE, Gorham DR (1962) Brief Psychiatric Rating Scale (BPRS). *Psychol Rep* 10:799–812

Owen F, Cross AJ, Crow TJ, Longden A, Poulter M, Riley GJ (1978) Increased dopamine receptor sensitivity in schizophrenia. *Lancet* II:223–226

Pugh MT, O’Boyle KM, Molloy AG, Waddington JL (1985) Effects of the putative D-1 antagonist SCH-23390 on stereotyped behavior induced by the D-2 agonist RU-24213. *Psychopharmacology* 87:308–312

Reynolds GP, Garrett NJ, Rupniak N, Jenner P, Marsden CD (1983) Chronic clozapine treatment of rats down-regulates cortical 5-HT₂ receptors. *Eur J Pharmacol* 89:325–326

Ruch W, Asper H, Bürke HR (1976) *Psychopharmacology* (Berlin) 46:103–109

Rupniak NML, Hall MD, Mann S, Fleminger S, Kilpatrick G, Jenner P, Marsden CD (1985) Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat. *Biochem Pharmacol* 34:2755–2763

Saller CF, Salama AI (1986) D-1 and D-2 dopamine receptor blockade: interactive effects in vitro and in vivo. *J Pharmacol Exp Ther* 236:714–720

Scholz E, Dichgans J (1985) Treatment of drug-induced exogenous psychosis in parkinsonism with clozapine and flupergazine. *Eur Arch Psychiatry Neurol Sci* 235:60–64

Simpson GM, Lee JH, Shrivastava RK (1978) Clozapine in tardive dyskinesia. *Psychopharmacology* 56:75–80

Snyder SH (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. *Am J Psychiatry* 133:197–202

Stoop JC, Verheijden PFHM (1986) D-2 receptor stimulation inhibits cyclic AMP formation brought about by D-1 receptor stimulation in rat neostriatum but not nucleus accumbens. *Eur J Pharmacol* 129:205–206

Sulpizio A, Fowler PJ, Macko E (1978) Antagonism of fenfluramine-induced hyperthermia: a measure of central serotonin inhibition. *Life Sci* 22:1439–1446

Toru M, Watanabe S, Shibusawa H, Nishikawa T, Noda K, Mitsushio H, Ichikawa H, Kurumaji A, Takashima M, Mataga N, Ogawa A (1988) Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. *Acta Psychiatr Scand* 78:121–137

Waldmeier PS, Delini-Stula AA (1979) Serotonin-dopamine interactions in the nigrostriatal system. *Eur J Pharmacol* 55:363–373

Woggon B, Heinrich K, Kufferle B, Müller-Oerlinghausen B, Pöldinger W, Rüther E, Schied HW (1985) Fluperlapine – a potential successor to clozapine. *Psychopharmacology* 18:73–74

Young MA, Meltzer HY (1980) RMI-81,582, a novel anti-psychotic drug. *Psychopharmacology* 67:101–106